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Abstract

In this report the analysis of a micro-scale pump is described. This micro-pump uses
active control to produce a distributed body force in a fluid micro-channel. The desired
effect of this body force is to drive fluid through the channel. Limitations, assumptions,
and design parameters are discussed.

The mathematical analysis of pump dynamics is explained in detail. A perturbation
analysis is used on the equations of mass, momentum and state to produce equations of
motion for first and second order effects. The first order effects are described by linear
wave motion in the fluid and are found by using integral equation methods. The second
order effects are driven by body forces resulting from first order effects. Thus, by
controlling the production of wave motion in the channel, second order excitation can also
be controlled.

This report is all theory and therefore needs experimental validation. Although many of
the assumptions used in this report have been used elsewhere in the literature and have
been found to be sufficient, there are many aspects of the problem which have been left
unresolved. In particular, flow separation in the fluid channel is a critical problem. If the
fluid does not separate, pumping will occur through the channel, however, if internal or
external forces are not sufficient to stop separation, this type of pump will not function. 
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Notation
 - channel length

 - channel height

 - source width

 - source location from center line

 - density of channel fluid

 - velocity of fluid particle

 - fluid pressure

 - shear coefficient of viscosity

 - expansion coefficient of viscosity

 - specific entropy

, ,  - perturbations of density

, ,  - perturbations of pressure

, ,  - perturbations of velocity

 - ambient sound speed

 - bulk modulus of fluid

 - body force excitation

 

 

 - dilatational potential

 - shear potential

 - dilatational wave number

 - shear wave number

 - circular frequency

 - dilatational sound speed

 - shear sound speed

 - time averaged response of 

 - solid angle coefficient

 - Green’s function

 - fluid domain
 - surface of fluid domain
 - vector pointing to a point in 

 - vector pointing to a point in 

 - solid angle on surface

 -  order Hankel function
 - shear potential for 2-D problems

, , ,  - solution vectors

, , ,  - influence matrices

, , ,  - influence matrices

, - solution vectors

 - length of  element
 - number of elements

,  - perturbation in x and y
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1. INTRODUCTION

In this paper the analysis of an acoustic micro-pump is presented. Unlike previous m
pumps which are comprised of oscillating diaphragms and a series of complex value
pump is unique in that it is based on the concepts of active control and acoustic strea

Micro-scale pumps have many applications. They can be used to drive micro-co
systems which can be used to eliminate detrimental heat in circuitry and can be u
power micro-fluid systems which can be used as an alternative to micro-electronics
can also be integrated into motion control systems for the purpose of moving obje
micro-space.

Recently, a few authors [1,2] have suggested using the phenomena of acoustic str
to build micro-pumps. Pumps operating by streaming would have few moving part
could be easily constructed. Acoustic streaming results from Reynolds stress in a
Reynolds stress can be produced by an acoustic wave with spatially varying amplitu
controlling the acoustic waves which produce Reynolds stress, fluid motion can al
controlled.

Acoustic streaming is a well known phenomena. Nyborg [3] used a perturbation m
and time averaging to explain how a damped acoustic plane wave can produce stre
Lighthill [4] expanded upon Nyborg’s explanation by quantifying the significance
various terms in the streaming equations. In this paper not all of the terms discus
Lighthill will be used. Only those terms that are necessary to show how active contro
be used to move fluid through a channel will be retained. 

R.M. Moroney, R.M. White, and R.T. Howe [1] constructed a pumping device driven 
flexural plate wave source. This device produced streaming by using the n
attenuation of evanescent shear waves to create a Reynolds stress. S. Shiokawa
Matsui [2] showed that a leaky surface wave could produce a larger Reynolds stress
fluid than a surface wave without leakage. 

In R.M. Moroney, R.M. White and R.T.Howes’ work, Reynold’s stress was the resu
wave distortion due to natural attenuation. In S. Shiokawa and Y. Matsuis’ work
distortion was enhanced by attenuation due to leakage. In this work distortion will 
from wave interference produced by using active control. 

2. PUMP GEOMETRY

The acoustic pump under consideration is shown in Figure 1. This pump consist o
substrates with an open channel cut between them. A cross-sectional view of this c
is shown in section A-A. The channel is of length  and of height  and it is assume
the fluid in the channel is Newtonian. On either side of the channel is a set of ve
sources. Sources are of width  and are  from the center of the channel. Op

sources are driven 180 degrees out of phase. In this paper opposing pairs will be tre
a single source. The pair of sources to the left of the center of the channel will be re
to as the left source, and the pair of sources to the right of the center of the channel 

l h

w lw
1
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referred to as the right source. As will be shown, by varying the relative phasing be
right and left sources, a net time averaged pressure gradient can be produced ac
channel. 

3. DERIVATION OF EQUATIONS OF MOTION

In the following section first and second order equations of motion for a Newtonian 
are derived. Much of this information has been accumulated from Temkin [5], Nybor
and Lighthill [4].

The equations of mass, momentum and state for a Newtonian fluid are given by

(mass)    (1)

(momentum)   (2)

 (state)    (3)

where  is the density of the fluid,  is the velocity of a fluid particle,  is the sh

coefficient of viscosity,  is the expansion coefficient of viscosity, and  is the spe
entropy.

Substituting the perturbation expansion

(4)

(5)

(6)

into (1), (2), and (3) and assuming that  (i.e., no externally driven flow) gives 

order

Section A-A

Section A-A
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Figure 1: Acoustic pump geometry
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(mass)   (7)

(momentum)   (8)

 (state) (9)

where  and  is the bulk modulus of the fluid.

To  order this perturbation expansion gives
(momentum)

  . (10)

Taking the time averaged of (10) and noticing that, as stated by Lighthill [4], 

equation (10) becomes

(11)

where  is the time average of  and 

. (12)

The function  is the Reynold’s stress vector.

Assuming that  (for second order channel flow)

. (13)

Equation (13) is Laplace’s equation driven by a right hand side comprised of first 
terms and the gradient of the time averaged second order pressure. The vector fun
represents a body force driving the second order equation of motion. To calcula
body force, the first order solution (7), (8), and (9) must be solved for and substitute
(12). This first order solution can be represented in terms of linear dilatational and 
waves. By controlling these waves in the fluid, the body force, , can be controlled
therefore, so can the second order time averaged motion of fluid through the chann

This first order solution can be represented in terms of linear dilatational and shear w
Combining equation (7), (8) and (9) gives
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where  and . The velocity  can be written as

(15)

where  and . Substituting (15) into (14) and taking the gradient of the result 

. (16)

Substituting (15) into (14) and taking the curl of the result gives

. (17)

Equation (16) is the wave equation for dilatational motion in the fluid, and (17) is the 
equation for shear motion in the fluid.

The temporal transform of (15), (16) and (17) results in

(18)

, (19,20)

, , (21,22)

where

, , (23,24,25)

for harmonic excitation. Equations (19) and (20) can be solved for using a bou
element method. The solution to these equations will produce  and . Using
solution and (18),  can also be determined. 

Rewriting (12) in terms of  gives

. (26)

Thus, with ,  is determined. For waves propagating in only the x direction, (26) 
becomes

(27)

where ,  is a vector in the x direction.
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4. SOLUTION OF THE EQUATIONS OF MOTION

Equations (19), (20) and (13) are the equations of motion for the fluid. Equation (19
(20) can be used to solve for  and  using a boundary element method. With  a
(18) can be used to solve for , and with , (26) can be used to solve for . Wi
equation (13) can be used to solve for the time average flow of fluid in the channel, 
the net time averaged pressure gain across the channel . In this section a solu

 is outlined.

Assuming that the width of the channel is large compared to its thickness, a
dimensional plane stress analysis is appropriate. The surface of the Figure 1 fluid d
can be discretized as shown in Figure 2. In two dimensional space, the in
representations of (19) and (20) are given by

(28)

(29)

where  is the surface of the fluid domain, , , , 

 if ,  if ,  is a zeroth order Hankel function and  where

is a unit vector normal to the analysis plane. 

As shown in Figure 2, vector notation can be used to define points in the channel a
the channel surface. The surface  can be represented as the union of a number
surfaces where

.
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If the surface  is discretized into a distribution of uniform elements, then using boun
element theory [6] there will be  unknowns in this problem where  is the 

number of elements. These unknowns are the values of , ,  and 

the center node of each element. Thus,  unique equations are required to so

these  unknowns. These equations come from (28) and (29) and from bou
conditions.

Two  unique equations can be formed by discretizing (28) and (29) as

, (30,31)
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Another  equations can be formed from the boundary conditions. These bou

conditions are different for each sub-surface of . On the  and  surface

normal velocity is zeros, therefore, from (18)

 for . (32)

The term  in (32) is contained in the vector  and the term  in (32) ca

determined by using a finite differences.

Velocity sources are also represented as a set of boundary conditions. If  is the n

velocity of the left source and  is the velocity of source, then
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the channel and can be used to calculate potentials at any point in the channel. 
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From (37) and (38) the potentials at any point in the channel can be determined. To
for the body force, , the velocity, , must be computed from the spatial derivativ
these potentials. These spatial derivatives can be approximated by using the 
difference formulas

(40)
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averaged velocity, , or the time average pressure gradient, , can be deter
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----------------------------------------------------------------------------∼

y∂
∂ Ψz r1obs

( )
Ψz r1obs

∆y+( ) Ψz r1obs
∆y–( )–

2 ∆y
----------------------------------------------------------------------------∼

∆x ∆y

V1

F F

v2〈 〉 ∇ P2〈 〉
8
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5. NUMERICAL RESULTS

Using the geometric and fluid properties given in Table 1 and Table 2 and an exci

frequency of  Hz, a first order and second order solution can be determined.  

The first order velocity distribution across the channel was found to be almost un
everywhere except very close to the wall. Thus, it was assumed that acoustic propa
was one dimensional and wall effects contributed little to the second order flow thr
the channel. Since wave propagation through the pump is one dimensional, the body

, can be approximated by (27). 

If the flow of fluid through the pump is blocked but acoustically transparent, a net pre
head, , develops across the pump. From (13), this pressure is simply the integra
along the length of the pump. This net pressure head is an indication of the ability 
pump to force fluid through the channel assuming that the fluid in the pump doe
separate.

Letting  then  can be varied to determine  as a function of ampli
and phase. Figure 3 shows  for various amplitude between 0 and 1.0, and 

between 0 and  radians. Notice that maximum  occurs when 

when  where the first maximum corresponds to pumping to the left,

the second maximum corresponds to pumping to the right

In Figure 4 the x-direction first order acoustic velocity of the fluid at the center of

channel can be seen for . Notice that the waves from the two sou
cancel to produce waves propagating from the sources in opposite directions with dif
amplitudes. Thus, the amplitude of wave velocity in the channel changes substa
near the sources. 

Table 1: Geometric Properties

400 1000 1000 18000

Table 2: Fluid properties (air)

10
5

h w lw l

um um um um

µ µv ρ0 B

1.846
11–×10

kg um s⋅⁄

0.65 µ⋅ 1.77
7–×10

kg m⋅ um
4⁄

2.135
7–×10

N um
2⁄

F

∆P F

vright 1.0um s⁄= vlef t ∆P

vleft

2π ∆P vleft 1.0e
j
π
2
---
um s⁄=

vleft 1.0e
j
3π
2

------
um s⁄=

vleft 1.0e
j
3π
2

------
um s⁄=
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In Figure 5, the Reynolds stress resulting from the Figure 4 wave solution is sh
Notice that even though the integral of the stress along the length of the pump is po
at some locations this stress is negative and then at other locations positive 
Therefore, even though the integral of the body force tends to drive fluid throug
channel, internally this body force tends to also pull the fluid apart. In this paper
effect will be referred to as fluid separation. If fluid separation occurs, the pump w
non-functional. This separation can only be balanced by an internal or external 
which holds the fluid together. For example, if the fluid were under a static pressure
viscous forces were very large, then separation could be avoided.

Figure 3: Pressure difference across pump for block flow
and variable amplitude and phase of left source
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Figure 4: x-direction velocity along the center line of the channel 
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By simulation, it was found that a left source relative phasing of  and amplitud
1.0 will produce a maximum pressure drop across the channel. By holding the re
phasing of the second source to , by holding the amplitude of the secondary s

to 1.0 and by varying , an analysis of the optimal spacing of sources can be perfo

Figure 6 shows the maximum pressure drop across the pump versus  

. For  maximums occur. This corresponds to a spac

between the sources of .

Figure 5: Body force in the x direction as a function of 
distance along the center line 
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Figure 6: Pressure drop along the length of channel versus location
of the sources.
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 6. CONCLUSIONS

The analysis outlined in this paper makes a number of assumptions. First it was as
that only first and second order effects are of importance. If the sources are drive
hard, higher order effects leading to turbulence and severe mixing will occur, and 
assumptions will then be poor. It was also assumed that wall effects were small. Sinc
order acoustics were almost completely one dimensional, this was not an extremel
assumption. Moreover, this assumption was a conservative one considering th
inclusion would help not hinder pumping. 

Another assumption was that flow separation does not occur. The net body force 
pump will attempt to move the fluid left or right; however, internal to the fluid this sa
force will also attempt to produce fluid separation. If the fluid separates, no pum
action will occur. Instead, part of the fluid will be blown out of one end of the pump,
of the fluid will be blown out of the other end, and the rest will be trapped wit
Separation could be limited if internal or external forces were sufficient to hold the 
together. For example, if a net compressive force existed within the fluid which
greater than the repulsive body force, then pumping could occur.

Notice that the pressures in Figure 6 are very small. These pressures are for a right
velocity of 1 um/s. If the sources are driven hard, this velocity will be much larger, an
Figure 6 pressure drop will be enhanced. Nevertheless, the exact level of exc
required to produce a significant pressure drop is as of yet unknown.

The concept of acoustic pumping is a novel one which should be explored furthe
impact of developing this concept is substantial. Micro-pumps can be used in a num
applications ranging from micro-level cooling to micro-manipulation. However, 
concept of acoustic pumping is still very theoretical. Experimental analysis is require
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